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ABSTRACT  
One of the goals of the U.S. Third Offset Strategy is to develop a truly collaborative human-machine fighting 
force. Currently, the state of the art in the field is a single soldier or sailor providing direct supervisory 
control of a machine agent, requiring the soldier’s full attention. A truly collaborative force requires capable 
machine agents able to generate and execute courses of action without constant, direct human supervision. 
At the same time, the human teammates must still be able to affect the machine agents’ decision-making, and 
vice versa. This paper addresses the topic of human-machine interaction, communication and cooperation 
applied to Artificial Intelligence planning. 

Automated machine-based agents interact with the world in two ways: they react to external stimuli or 
deliberately execute previously generated courses of action. Reactive behaviours, such as a ground vehicle 
swerving to avoid obstacles, happen in extremely short time frames and address short term needs. Not only 
is there little time for human intervention during execution, there is also little need, since the decision 
making complexity for execution of short term, immediate goals (e.g. avoid the obstacle in the path) is low. 
In contrast, generation of deliberative courses of action is more complex, and requires goal-based decision 
making: given a causal model of the environment, a set of objectives, and a belief about its current state, a 
machine-based agent can formulate a course of action – a plan. This form of goal-based decision-making is 
called “Planning” by the Artificial Intelligence (AI) community. 

The AI Planning community has developed planning algorithms over the past several decades. Many of these 
algorithms work well when applied to well-constrained planning problems, where assumptions of turn taking 
and a static world hold. Even games as complex as Heads-Up No-Limit Texas Hold ‘Em poker are well-
constrained when compared with the dynamic, uncertain warfighting environment. When the current 
planning algorithms are applied to real-world, military-relevant problems, the domain space the planning 
agent must reason over explodes such that its planner can’t find a solution at all, or by the time it finds a 
solution, the time to execute it has passed. 

In this research, we hypothesize that human knowledge can be injected into the AI planning process to help 
pare down the search space and assist the machine agents’ planning by providing additional intelligence in 
the form of constraints and goals dynamically during plan generation and execution. We start with a simple 
representation of a naval-relevant planning problem and systematically increase complexity by removing 
underlying assumptions that make the problem tractable. As we remove assumptions, we find ways to inject 
human intelligence into the planning process, enabling the machine agent to reason over more complex 
scenarios. We apply this method to multi-agent mobile target search scenarios in simulation, and have 
developed ways for a human user to interact with several AI agents’ planning without requiring the user to 
understand the complex mathematics behind the planning algorithms. This paper addresses our 
methodology, development of a human-user interface, and development of an experimental framework for 
measuring the effectiveness of human intelligence injection into AI planning through human subject trials. 
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1.0 INTRODUCTION 

Recently, the U.S. Military has expressed a desire for a fully collaborative human-machine fighting force, 
and also seeks to find ways to enable a single or small group of soldiers or sailors to oversee many machine 
agents, e.g. in a robotic swarm [1]. Currently, at best a single soldier or sailor oversees a single machine 
agent, and in many cases a machine agent requires several humans for oversight and mission support. In this 
paradigm, the human operator is required to make very low-level decisions for the agent, such as supplying a 
fine waypoint trajectory for its motion, or even tele-operating it. The human also has to closely monitor the 
machine’s behaviour, and may be required to take emergency action on the machine’s behalf. Such tight 
supervision is not practical when overseeing more than a few agents [2].  

Several technical advances are needed in order to transition from today’s single robot-single human operator 
paradigm to a truly collaborative multi-machine, multi-human force. These include, but are not limited to, 
advances in machine sensing, perception and reasoning, and advances in command and control interfaces for 
facilitating human interaction with and supervision of multiple agents. This research focuses on enhancing 
machine reasoning and decision-making by incorporating human decision-making into machine goal-based 
reasoning, as well as on effective means of communicating machine agents’ decision-making and reasoning 
to human operators for effective teaming. 

When a machine agent interacts with the world, it can respond to external stimuli, as a mobile robot avoids 
obstacles or as a digital assistant searches for, and then answers, a query. However, if a machine agent is to 
achieve a longer-term goal, such as reach a destination across a room, efficiently perform a series of tasks, or 
play a game such as Chess, it has to generate a course of action to achieve its goal. This goal-based reasoning 
process is called “Planning” by the Artificial Intelligence (AI) community. If humans are to effectively team 
with machine agents, and are to effectively supervise many machine agents, they need to be able to influence 
the machines’ planning processes and vice versa. 

AI Planning is an active area of research and has been over the past several decades [3, 4]. Much of the work 
has been focused on domain-independent planning algorithms that are capable of solving wide varieties of 
planning problems in different application domains. To use such planning algorithms, one must provide the 
planner with a model of the application domain, a planning problem definition, a goal to achieve and an 
initial starting condition. This requires that the user not only understand the application domain and the 
problem, but must also have understanding of how to formulate them so that the solver can interpret and 
solve the problem. Additionally, many of the existing planners require that the domain be modelled using 
discrete representations of variables, that the assumption that the domain remains static during planning 
holds, that the agent knows all relevant facts about the domain and that the agent’s sensing is perfect. 
Though the AI planning community continues to improve planning algorithms and has addressed some of 
the above limitations, they still cannot handle all real-world complexities, especially as found in highly 
dynamic, uncertain domains relevant to successful warfighting. 

1.1 Research Approach 

This research develops a methodology to mature AI planning algorithms to make them applicable to realistic, 
military-relevant scenarios. Given a simplified version of a military-relevant problem, we apply an 
appropriate AI planning algorithm to it, and see how it performs. If the algorithm is able to generate a plan 
for the simplified problem, we remove one of the simplifying assumptions and re-run the planner. If the 
planner is still successful, we remove another simplifying assumption. We continue removing assumptions 
until the planner is unable to generate a solution. At this point, we then find ways to inject human 
intelligence/help into the planning so that it is able to generate solutions. We then remove another 
assumption, find where the planner is unsuccessful again, and find additional ways to inject human 
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intelligence and help into the planning process. Using this systematic approach, we enable AI planners to 
address more realistic planning problems (see Figure 1). 

 

Figure 1: Assumption removal and human intelligence injection process 

This research also addresses methods for communicating the AI agent’s goals, beliefs and needs to a human 
supervisor so that s/he can assist the planning agent. Unlike previous work in semi-autonomous systems, 
which focuses on methods to assist a robot during task execution [5], this work has similarity with mixed-
initiative planning [6-8], where a human and AI agent interact in order to jointly form a plan before task 
execution. The mixed-initiative planning work cited focuses on tight interactions between the machine and 
the human, where the machine agent poses a series of questions to a human and explicitly asks for human 
input, and hence the need to create complex domain models is circumvented by having the human present in 
the planning as an active participant. However, as with tight supervisory robot control fielded today, a tight-
knit and highly interactive planning approach doesn’t scale to situations where one human must supervise 
many machine AI agents, as in swarming applications. This research seeks to find ways to facilitate human 
assistance to the AI agents without requiring the agents to explicitly request help, and also without requiring 
tight supervision of each agent from a human operator, so decision-making is less tightly coupled than in 
mixed initiative planning. The goal is to find ways to couple the human abilities of quick decision-making 
under highly dynamic situations with the computational strengths of AI planning agents so that together 
humans and machines can accomplish complex tasks neither can do (either well, quickly or at all) without 
help from the other. To facilitate such cooperation and interaction, the agents’ goals, beliefs and needs have 
to be displayed to the human in an easily interpretable manner, and the human needs to be able to provide 
information in a form the machine agents can understand and use. 

The rest of this paper is organized as follows. Section 2 describes the current state of the art of AI Planning, 
as well as our prior work on injecting human intelligence into the planning process of a single AI agent in a 
naval-relevant scenario. Section 3 introduces our notion of hierarchical planning and describes the extension 
of our single human-single agent approach to a single human-multi-AI agent persistent search scenario. 
Section 4 describes our approach to and development of a human subject test and experimental framework. 
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As of the time of writing, the team is still awaiting permission to officially begin the human subjects test. 
Section 5 concludes the paper and discusses expected future outcomes and directions. 

2.0 BACKGROUND AND PRIOR WORK 

2.1 State of the Art of AI Planning 
The AI community has developed several types of planning algorithms and techniques over the last several 
decades, with primary emphasis on developing domain-independent planners that can solve problems in a 
wide variety of application domains. Early methods, often referred to as “Classical Planning,” use situational 
calculus to find a set of transitions from an initial state to a goal state given a domain model that encodes all 
possible state transitions using some form of formal logic, such as prepositional or first order logic [3]. These 
methods assume the world is static, time is atomic, only the agent causes changes to the state of the world, 
the agent’s actions are deterministic, the agent has complete domain knowledge, the domain is not affected 
by external influences (i.e. if the initial conditions are completely known, then the action sequences 
generated will be completely and correctly predicted), and the planning goals are known. Such assumptions 
are valid even for complex games such as Chess and Go, but do not hold for many real-world problems. 

State-space search methods have been used to solve classical planning problems. Such methods include tree-
based and graph-based search, where states an agent and the environment are junctions or nodes, and 
transitions between states are “branches” or “edges.” Search algorithms can start from either the initial state 
or goal state to build plans (forward search and backward search, respectively), and can either explore down 
one path (depth first) or explore all transitions from the starting node (breadth-first). The planning 
community has developed heuristics for choosing between alternatives, in order to speed up plan generation. 
A* search is one well-known best-first search method [3]. Other heuristic search methods include hill-
climbing, simulated annealing, genetic algorithms and belief-state search for partially observable 
environments. Though early heuristic functions were encoded by hand, methods exist to generate heuristics 
for particular problems automatically by analysing the domains [4]. 

Planning problems can be formulated as constraint satisfaction problems (CSPs). In constraint satisfaction, a 
solver seeks to find an assignment of permissible values to a set of variables such that the assignment 
satisfies all of the constraints that dictate how the variables interact and/or combine. CSPs can be defined 
using prepositional logic, Boolean formulas or mathematical formulas. Search methods used for classical 
planning can be applied to constraint satisfaction problems. Additional methods for solving CSPs include 
constraint propagation, backtracking, back-jumping and model checking [3]. Though methods such as model 
checking can solve large CSPs, such problems still require assumptions of determinism (no uncertainty) and 
static domains with no external influences. 

Domain-specific planning algorithms highly tailored to particular applications and problems also exist. For 
example, Google’s Optimization Tools contain specialized algorithms that solve combinatorial optimization 
problems such as Traveling Salesman Problems, knapsack problems, linear assignment problems, bin 
packing problems, and vehicle routing problems, as well as more general constraint and linear programming 
solvers [9]. In order to use such solvers, one must cast one’s planning problem into the particular form 
required by the planning algorithm, and the same assumptions used when encoding the domain must apply to 
any new planning problems one tries to solve. 

The AI community has also developed planning methods that are able to cope with more complex scenarios. 
Hierarchical Task Networks (HTNs) divide complex planning problems into smaller and smaller sub-
problems until sub-problems are fully decomposed into sets of primitive actions. Sub-problems, called 
higher level actions (HLAs), may be realizable by various combinations of primitive actions. When solving 
HTNs, a planner may reason over the higher-level actions, letting an agent determine the primitives to use 
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during solution execution [3]. The Simple Hierarchical Ordered Planner (SHOP) and SHOP2 HTN planners 
generate plans with steps in their execution order, reducing complexity [10], and have been extended to 
handle nonlinear and continuous effects [11] as well as user preferences [12]. Case-based planning methods 
use databases of previously generated plans to form solutions to new planning problems. This method is 
applicable to planning problems that exist within one application domain, and where new planning problems 
are assumed to be similar to previously solved problems. Reuse of previous solutions is intended to reduce 
computational complexity [13]. However, the assumption that new problems are similar to old problems is 
not necessarily valid. 

Planning methods that handle uncertainty have been developed, and include contingency planning, Markov 
Decision Process (MDPs) and Partially Observable Markov Decision Process (POMDPs) iteration, and 
inference over statistically modelled processes. In contingency planning, the domain is modelled as an “And-
Or” graph and online planners generate solutions using depth-based search, random walk, hill-climbing or 
Learning Real-Time A* (LRTA*) [3]. Fully observable, stochastic environments can be represented as 
Markov Decision Processes (MDPs), assuming uncertainties in the environment, sensory data and effects of 
agent actions can be quantified [3, 14-15], and optimal solutions to problems in such representations can be 
found using dynamic programming. POMDPs are extensions of MDPs to domains in which an agent cannot 
fully observe the environment, hence its current state is also represented as a probability distribution. 
Methods for handling POMDP planning include back-chaining [14], an extension of value iteration [15], and 
branch-and-bound and gradient ascent methods [16]. Inference reasoning algorithms have been used to solve 
partially observable stochastic processes modelled as Bayesian Non-Parametric Models (BNPs) [17]. 
Finally, methods for planning for imperfect information games have been developed, and have been 
successful at defeating all human opponents of Heads-Up No-Limit Texas Hold ‘Em poker [18], using a 
combination of planning over abstraction (blueprint strategy computation), real-time sub-game solving, and 
self-improvement game play. Note that even in imperfect information games, the assumption of a static 
world while planning still holds. 

Model-free Reinforcement Learning algorithms have had recent success in playing videogames, starting with 
DQN on a variety of Atari games [19]. This method directly learns from experience and does not have any 
explicit planning or model of the games. DQN has best performed on games that were more tactical than 
strategic though where there is a rich reward signal or reactions are key. However, recent work by OpenAI 
on Dota 5v5 has shown the algorithm PPO can play a complex, team-based adversarial game in real-time 
with partial observations [20, 21]. Even though no planning is being done, the agent is able to play 
competitively at a game where long-term strategy, teamwork, and tactics are all important by learning from 
previous data and only using the most recent states as the input to the action selectors. This approach is 
promising since it doesn’t require explicit domain modelling in advance. However, it becomes difficult for a 
human to collaboratively work with an agent when s/he doesn’t understand the agent’s decision-making 
process. 

As problem complexity increases, more complex domain models with large state space representation are 
required, regardless of the methods one intends to apply to solve the planning problem. When considering 
large state spaces, planning algorithms require significant time to perform computations or, in some cases, 
cannot generate plans at all. Plan generation is PSPACE-hard even when the set of reachable states is finite – 
to generate the shortest set of transition actions, the number of states that must be considered from initial to 
goal state is exponential in in the size of the planning problem description [4]. Planning computational 
complexity can range from constant time to NEXPTIME-complete, with increasing complexity 
corresponding to fewer simplifying assumptions [22]. This research addresses the challenge of applying the 
state of the art planning techniques, especially those that handle some degree of uncertainty, to naval-
relevant problems that are not well constrained. 
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2.2 Single Human – Single Agent Cooperative Planning 
As a starting point for this research, we selected an underwater object search task as a representative naval-
relevant scenario, and applied the systematic relaxation approach described above to it. In its most simplified 
version, the underwater search task is a recasting of the “Wumpus World” game [3], where the Wumpus is 
replaced by an object of interest and pits are replaced by underwater obstacles. Note that unlike the Wumpus 
game, there is no treasure and here the AI agent simply wants to find the object and interact with it. The 
simplest version takes place on a square grid, and the agent knows where it starts, all locations of obstacles 
and the object of interest and has perfect sensing and motion. Under these circumstances, planning is easily 
accomplished using A* search or other tree or graph-based search methods, and no human assistance is 
necessary. However, if this search were to be expanded into 3-dimensional space and the agent’s roll, pitch 
and yaw were also considered, the number of states would become too large for tree-based methods to find 
optimal paths in reasonable time and one would need to employ heuristics to get real-time but sub-optimal 
results. 

We were able to remove several simplifying assumptions to this scenario without needing human assistance, 
simply by changing planning algorithms and domain representations. By casting the search problem (still in 
2 dimensional space) as an MDP, the problem becomes a simultaneous localization and mapping (SLAM) 
problem in addition to an object search. The SLAM problem has been well studied in the robotics and AI 
communities [23]. In SLAM, the agent does not have to have perfect sensing, motion, or knowledge of 
obstacle locations, and can still successfully navigate and localize, while building a representation of the 
environment. This representation is more realistic since sensors are prone to false readings, unmodelled 
currents can affect agent motion and it is unlikely that all underwater object locations are known a priori. 
This representation still assumes the search space is discretized into a grid. 

In the MDP representation used here, the agent uses a reward function distributed over the entire discretized 
space to decide where to move next, by moving toward locations where it will receive high reward and 
avoiding locations where rewards are low. Its overall goal is to find a policy that will maximize its reward 
over time. When no information is provided about the space in advance, the agent is incentivised to search 
randomly. As the agent explores and senses obstacles, the value of the reward in previously explored regions 
decreases, and, at sensed obstacle locations, the reward drops significantly. The reward function thus evolves 
as the agent navigates. Further details on the implementation on the MDP iteration planning applied in this 
research are available [24]. 

This formulation provides a human with opportunities to influence the agent’s planning by interacting with 
the reward function. A human operator can set initial goals and keep out areas, high reward and low reward 
areas, respectively, and can make changes to goal locations and keep-out locations on the fly by changing 
values of the reward function while the agent navigates. Rather than requiring a human user, especially a 
non-expert user, to interact with the mathematical values directly, the team developed a graphical user 
interface to facilitate such interactions, using the Intelligent Multi-UxV Planner for Adaptive 
Collaborative/Control Technologies (IMPACT) System [25, 26] as a simulation and visualization tool and 
user interface. The agent’s search area, current location, goals and detected obstacles are displayed onscreen 
in one of two ways: as a greyscale occupancy map (see Figure 2, left) or as a reward function map (see 
Figure 2, right). The greyscale representation shows the agent’s position (agent icon), user-defined agent 
goals (red circles), detected obstacles (black areas), previously traversed areas free of obstacles (white areas) 
and unexplored areas (grey areas). The reward function is depicted as a heat map overlaid on the search area, 
where rewards range from red to blue through a rainbow colour scheme, with red depicting high rewards and 
blue depicting low rewards. In the heat map representation, the user-defined goals are shown in red, detected 
obstacles are shown in blue, and other areas primarily green, have intermediate reward values. The reward 
function is structured such that its value gradually decreases away from a user-defined goal location in all 
directions. 
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Figure 2: Occupancy map, left and reward function map, right [24], as displayed in IMPACT. 

The user is able to interact with the agent’s reward function using a custom task incorporated into 
IMPACT’s Task Manager (see Figure 3). The user can toggle between the heat map (reward function map) 
and the greyscale map using the drop-down menu button. To change the intensity of the reward function, the 
user clicks on the appropriate button (Increase Intensity or Decrease Intensity) and then clicks on the search 
area. By changing the reward intensity graphically, the human can influence the agent’s behaviour and 
navigation without understanding the mathematics behind the reward function or the agent’s model of its 
motion, and can do so as the agent executes its motion. 

 

Figure 3: Task Manager controls for human operator, from [24]. 

3.0 HIERARCHICAL PLANNING WITH MULTIPLE AGENTS 

In the single-agent mapping scenario, MDP iteration is used to fuse obstacle data and determine where the 
agent should go next. As the planning horizon, number and complexity of tasks, and number of agents 
increase, it becomes impossible to plan the whole mission at the lowest level of granularity (e.g. direct motor 
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control actions). Hierarchical planning allows one to solve a complex task by composing the solution from a 
nested hierarchy of increasingly abstracted, simplified problems. This approach can be used to guide a team 
of unmanned systems in mapping an area, persistent monitoring, and tracking moving targets. A concrete 
example is that a group of agents can monitor an area by first deciding how to split the area, potentially 
based on agents’ different skills or battery charge (algorithm 1) and then letting each agent decide for itself 
the path to best monitor its assigned area (algorithm 2). At the lowest level, another planner governs the 
physical actuations required to maintain on course in the presence of unmodelled disturbances or unknown 
obstacles (algorithm 3). 

There are at least two reasons for adopting a hierarchical approach: one to benefit the human and the other to 
benefit the autonomy. First, people have a limited attention bandwidth available and a person cannot directly 
control more than one vehicle at a time. Thus, in order for human-autonomy teaming with more than one 
robot, at least some level of hierarchy is required. Furthermore, it can be challenging for a person to even 
maintain situational awareness of 8-12 agents each doing their own tasks autonomously [2], let alone to aid 
by also directly tasking them or providing input on their paths. This leads us to conclude that people are most 
suited to aiding a team of robots by providing input at the higher levels of hierarchical abstraction. 

As one introduces multiple agents into a strategic planning domain, the algorithmic complexity increase 
dramatically. The challenge comes largely from the coupling between each agents’ actions. Because each 
agent affects the rest of the team as well as the global environment, care must be taken to ensure that all team 
members coordinate so they do not interfere with one another, not perform the same task twice. However, 
planning over a long time horizon for all agents at the lowest level of abstraction in a centralized way 
becomes computationally infeasible due to the combinatorial number of possible joint trajectories that must 
be evaluated. For this reason, we elect to solve a high level coordination/assignment problem to decide 
which agent(s) should do which task(s). Once this decision is made, the agents can each perform their own 
path planning and reactive planning to safely achieve their assigned goals. As tasks are finished or new ones 
arise, replanning can perform multi-agent assignment again, passing the updated goals to the lower level 
algorithms. A schematic of our model can be seen in Figure 4. 

In addition to depicting the type of planning algorithms appropriate for use at the various levels of the 
hierarchy, Figure 4 depicts the levels at which various types of human intelligence are most appropriately 
inserted into the planning process. At the highest level, a human commander will define the overall mission 
goals, such as priority search locations in a multi-agent search scenario. The commander may also have 
preferences for which agents perform which tasks, or may specify that agents with particular abilities are 
suited to particular tasks. This information can be injected into task assignment planning. In addition to task 
assignment preferences, the human commander may also have additional information about activities or 
features in the search environment, such as cluttered/unsafe areas or other keep-out zones. Environmental 
information will be used by each agent as it plans its navigation routes, and such information may change 
over time, so the human commander requires methods to communicate this information to the appropriate 
agents. As stated earlier, it is difficult for one human to closely monitor more than 8-12 agents, so aside from 
occasional tele-operation (assuming the mobile agents have enough autonomous capability to handle their 
own well-being in most situations), human injection at the lowest levels of planning is not needed. 
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Figure 4: Hierarchical planning model, including areas for injection of human intelligence 

3.1 Example: Multi-agent Persistent Monitoring 
As an example of a multi-agent hierarchical planning problem, consider a 2-dimensional environment that 
requires persistent monitoring with multiple mobile machine agents, where the importance of maintaining 
watch over some locations is of greater importance than others. Following the hierarchy in Figure 4, a human 
commander defines locations that need to be observed, as well as assigning the level of importance to each 
location. The hierarchical planning process then starts, omitting the “Multi-Swarm Assignment” level in this 
case. 

Voronoi Partitioning: Since some parts of the environment are more important than others, the highest level 
of the hierarchy partitions the environment into N continuous regions, one for each agent. The Voronoi 
partitioning algorithm [27] weights important regions more heavily so some agents may cover large swaths 
of unimportant areas, whereas other agents cover smaller, more important regions more frequently. 

Linear Assignment: Once the optimal partitioning is determined, we use the Hungarian algorithm solution to 
the Linear Assignment problem [28] to match each agent with one region based on the distance to the areas’ 
centroids. The global matching ensures that sum of distances between agents and their assigned regions is 
minimized.  

Markov Decision Process: Each agent is then provided their region as well as the relative importance of the 
subareas in that region. The MDP algorithm uses the importance values as the reward for each potential 
location.  When a location is visited, its importance is set to zero. Globally, the importance increases back 
over time at a rate dependent on how important a person deems that area. 

4.0 HUMAN SUBJECT EXPERIMENTAL FRAMEWORK 

The prior work described above established methods for non-expert users to interact with individual AI 
agents performing navigation and search tasks, and the team has introduced and implemented a hierarchical 
planning structure that can handle multi-agent persistent monitoring as well as multi-agent object search. 
However, to date the research team has been unable to quantify performance improvements and also has yet 
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to determine how well such methods scale to single-human multi-AI-agent scenarios. Additionally, the team 
has not gathered any data on the effectiveness of the heat map as a method for displaying an AI agent’s goals 
and belief states to non-expert users. To gather such data, the team has developed a human subject 
experimental framework, test scenario and protocol, currently under review by the U.S. Navy’s Human 
Protection Review Office. 

The human subject study uses a heterogeneous multi-agent search scenario to determine whether the human 
input enables reduction of computational complexity and time required by the planning agents to generate 
successful assignments and motion paths that accomplish the search goal. A human subject plays the role of 
a human commander of a small fleet of 7 autonomous, unmanned surface vehicles (USVs) and 5 unmanned 
air vehicles (UAVs) in a fictitious, simulated coastal area of the world. The human-UxV fleet has been 
tasked to find an adversary who is somewhere in the region. Each USV has its own machine artificial 
intelligence (AI) agent capable of planning and executing its motions, using the MDP iteration method 
described above. The UAVs are carried by a “carrier ship” that serves as a mobile charging base, which the 
human participant can instruct to move to different locations. The participant can also instruct the carrier ship 
to deploy all of the UAVs, which then use their own MDP agents to navigate and perform search tasks while 
remaining close enough to the carrier ship to recharge their batteries as needed. The UAV deployment is 
accomplished through Voronoi partitioning. Finally, the participant has an AI assistant that can help assign 
the USVs to search areas in the region using a combination of Voronoi partitioning and the Hungarian 
method for linear assignment. Note that the human participant can decide to assign a subset of agents to 
specific search areas and can have the AI assistant take care of assignments for the remaining agents. 

The experiment front-end is a web-based user interface that displays a map of the fictitious region where the 
experimental scenario occurs, icons of the autonomous agents the user can interact with on the map, as well 
as various GUI interfaces the user can click on (see Figure 5). This user interface is agnostic to the type of 
web browser a participant uses, hence one can perform the experiment from any computer on the network 
where the host server resides. A dedicated computer workstation hosts the front end, and also runs the 
experiment back-end simulations and AI planning algorithms, and serves as a data recording device. 

The web-based user interface (Figure 5) contains a map of the fictitious littoral region in the upper right, a 
table of simulated unmanned vehicle agents on the left that includes information about each agent’s state 
(e.g. fuel levels, current tasks assigned) and a timeline of events at the bottom. During the experiment, 
participants receive information about what is happening in the scenario in several ways. Agent locations are 
displayed on a map in the web interface as they move about the region. Their status, task assignments and 
power levels are displayed in a table, which dynamically updates as the agents perform tasks. A participant 
can click on an agent in the map, which then displays a heat-map for that agent overlaid on the main map 
that displays the agent’s reward function over its assigned search region, similar to the heat map shown on 
the right side of Figure 3. As in the earlier IMPACT-based single-human-single-agent simulation, the human 
user can add or change the priorities of previously defined search locations by clicking on the appropriate 
increase or decrease buttons and then clicking on the map. A participant can also assign search areas to 
specific agents if they so desire, by dragging unassigned tasks to agents (Figure 5, left side), and by creating 
new tasks and then assigning them to agents. Such methods of interaction are intended to be intuitive, and 
easy to use with minimal instruction. As part of the pre-experiment brief, participants are provided with a 5-
minute tutorial that describes the features of the user interface and provides a walk-through of the interactive 
functions. 
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Figure 5: Human subject study web-based user interface 

During the experiment, participants will also receive situationally relevant information in the event timeline 
at the bottom of the web-based interface (see Figure 5). Such information includes camera images from 
USVs and UAVs as they search the region, as well as messages about events happening in the region that the 
machine agents cannot understand. In this experiment, the UxVs are assumed to be able to detect objects, but 
cannot perform the high fidelity classification for distinguishing the adversary from other entities. 
Participants can adjust search goals and reassign tasks based on this information to help the UxVs find the 
adversary. Finally, participants can also deploy the UAV fleet to obtain higher-quality images (that will 
appear in the event timeline at the bottom of Figure 5) if they so choose, by clicking on the “Deploy” button 
shown in the upper left in Figure 5 under “Carrier Information.” 

The human subject study records participant performance by tracking performance metrics based on the 
inputs the participant provides in the web interface, as well as by tracking metrics in the back-end simulation, 
such as completion time and computational load. Actions taken by a participant to direct the agents (e.g. 
clicking on the map or other user interface elements in the GUI, change of view, examination of the screen, 
etc.) will be directly recorded, as will the AI planning agents’ computations and actions. Immediately 
following an interaction with an agent (or agents), the experiment will pause and display a brief “pop-up” 
survey (multiple choice and short text-based answering) that asks the participant about the action just 
performed, and the reason the participant had for choosing to interact at the time. Such questions are 
designed to elicit participants’ beliefs about the AI agents’ behaviours, as well as to determine whether 
supplemental information was used to redirect/assist the AI agents. Additionally, pre-and post-experiment 
surveys are used to collect non-personal identifiable demographic information, such as whether or not a 
participant plays video games, and perceptions/understanding of the experiment, respectively. Post-
experiment questioning will also be used to gauge the effectiveness of the tutorial provided to participants 
before beginning the experiment. The post-experiment survey also includes the NASA Task Load Index [29, 
318], to be used as a supplemental measure of workload as well as to facilitate general comparison to known 
ranges of workload in other fields, to prior studies, and to other participant groups such as experts compared 
to novices.  

Performance measures include the time to complete mission, the level of computational burden exhibited by 
the AI agents (e.g. time it takes an AI agent to generate a plan) and instances of agent stagnation during 
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target search. The number of algorithmic course changes detected versus no effect in algorithmic outcome 
will be measured through accuracy to ground-truth goal representation. Correlation of course changes with 
instances of human participant interaction, along with participant answers to pop-up survey questions, will 
be used to determine whether human intervention helped, hindered, or had no effect on the agent’s search 
task. Analysis of a participant’s answers on the questionnaire regarding their awareness of the experiment’s 
purpose and understanding of the autonomous planning agents’ actions will use the established methods of 
Endsley and Garland [31]. 

The following hypotheses about the effects human input have on the performance of AI planning algorithms 
will be tested using results of this experiment: 

• The human-AI teams will successfully interdict the adversary more frequently than the AI alone. 

• The human-AI teams will complete the interdiction mission more quickly than the AI alone. 

• Those subjects with prior experience playing video games are expected to complete the interdiction 
task more frequently than those without prior gaming experience. 

• Those subjects with prior experience playing video games are expected to complete the interdiction 
task more quickly than those without prior gaming experience. 

Human subject tests are anticipated to start immediately upon protocol approval. 

5.0 SUMMARY 

In this paper we’ve described our approach to collaborative human-AI agent planning that can enable plan 
generation in highly dynamic, uncertain environments with few constraints, by injecting human intelligence 
into the AI agent’s planning process. Our prior work focused on single-human-single-agent collaboration, 
and we previously demonstrated a method and developed a user interface that permits a non-expert user an 
intuitive means of interacting with the single agent both before and during plan execution. In this paper, 
we’ve presented our extension of the single-human-single agent collaborative planning for search tasks to 
single-human-multi-agent search and persistent monitoring scenarios. By constructing a hierarchical 
planning process using several AI agents, we decompose a highly complex scenario into smaller planning 
problems, where the human supplies situationally relevant information at the higher planning levels, while 
the individual agents take care of their own lower-level execution plans. By interpreting situationally 
relevant information that machine agents are incapable of understanding, the human collaborator can help 
guide the AI planners towards plan generation, speeding up the planning process. Human experience also 
serves to fill gaps in the AI agents’ domain models. 

We’ve developed methods for human interaction with AI planning agents that do not require the user to have 
expertise in the field of AI planning, or extensive training in order to engage and collaborate with the AI 
agents. Use of intuitive representations, such as color-coded occupancy and heat maps, pictorial bar charts, 
and dynamic displays, are intended to make the AI agents’ goals, intentions and beliefs about their world 
states easily interpretable by non-expert users. Use of simple interaction mechanisms, such as adding or 
subtracting value from map locations by pointing and clicking, as well as dragging tasks into tables, are 
expected to be easy for non-experts to use to interact with the AI agents. We anticipate human test results 
will provide quantitative proof that human-influenced planning will result in better performance than if the 
AI agents perform the task with no additional assistance. We also anticipate qualitative results from survey 
questions will yield suggested improvements that can be incorporated into future user interfaces as well as 
suggestions for easier methods of interaction. 

In addition to performing the human subject testing described here, future extensions of this work include 
addressing the problem of collaborative planning when AI agents do not have continuous communication 
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with the human supervisor as well as each other. Additional extensions include expanding the hierarchical 
planning structure to include scenarios requiring task scheduling for long-duration missions, as well as 
scenarios requiring multiple human operators collaborating with multiple AI agents. The multi-human-multi-
agent scenarios introduce opportunities to incorporate methods for sharing unmanned assets already in 
development. Finally, this research has been conducted solely with simulated AI agents, so a natural 
extension is implementation of the AI planning agents on actual UxVs and ground station for real-world 
testing, experimentation and demonstration. 
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